Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nat Rev Immunol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698083

RESUMEN

Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.

2.
Nat Commun ; 15(1): 3387, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684663

RESUMEN

Influenza B viruses (IBVs) cause substantive morbidity and mortality, and yet immunity towards IBVs remains understudied. CD8+ T-cells provide broadly cross-reactive immunity and alleviate disease severity by recognizing conserved epitopes. Despite the IBV burden, only 18 IBV-specific T-cell epitopes restricted by 5 HLAs have been identified currently. A broader array of conserved IBV T-cell epitopes is needed to develop effective cross-reactive T-cell based IBV vaccines. Here we identify 9 highly conserved IBV CD8+ T-cell epitopes restricted to HLA-B*07:02, HLA-B*08:01 and HLA-B*35:01. Memory IBV-specific tetramer+CD8+ T-cells are present within blood and tissues. Frequencies of IBV-specific CD8+ T-cells decline with age, but maintain a central memory phenotype. HLA-B*07:02 and HLA-B*08:01-restricted NP30-38 epitope-specific T-cells have distinct T-cell receptor repertoires. We provide structural basis for the IBV HLA-B*07:02-restricted NS1196-206 (11-mer) and HLA-B*07:02-restricted NP30-38 epitope presentation. Our study increases the number of IBV CD8+ T-cell epitopes, and defines IBV-specific CD8+ T-cells at cellular and molecular levels, across tissues and age.


Asunto(s)
Linfocitos T CD8-positivos , Epítopos de Linfocito T , Virus de la Influenza B , Gripe Humana , Linfocitos T CD8-positivos/inmunología , Humanos , Epítopos de Linfocito T/inmunología , Virus de la Influenza B/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Adulto , Persona de Mediana Edad , Anciano , Reacciones Cruzadas/inmunología , Adulto Joven , Femenino , Masculino , Memoria Inmunológica/inmunología , Adolescente , Antígenos HLA-B/inmunología , Niño , Preescolar
3.
Nat Immunol ; 25(4): 594-595, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38491310
4.
Sci Rep ; 14(1): 4204, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378856

RESUMEN

Due to the synchronous circulation of seasonal influenza viruses and severe acute respiratory coronavirus 2 (SARS-CoV-2) which causes coronavirus disease 2019 (COVID-19), there is need for routine vaccination for both COVID-19 and influenza to reduce disease severity. Here, we prepared individual WPVs composed of formalin-inactivated SARS-CoV-2 WK 521 (Ancestral strain; Co WPV) or influenza virus [A/California/07/2009 (X-179A) (H1N1) pdm; Flu WPV] to produce a two-in-one Co/Flu WPV. Serum analysis from vaccinated mice revealed that a single dose of Co/Flu WPV induced antigen-specific neutralizing antibodies against both viruses, similar to those induced by either type of WPV alone. Following infection with either virus, mice vaccinated with Co/Flu WPV showed no weight loss, reduced pneumonia and viral titers in the lung, and lower gene expression of proinflammatory cytokines, as observed with individual WPV-vaccinated. Furthermore, a pentavalent vaccine (Co/qFlu WPV) comprising of Co WPV and quadrivalent influenza vaccine (qFlu WPV) was immunogenic and protected animals from severe COVID-19. These results suggest that a single dose of the two-in-one WPV provides efficient protection against SARS-CoV-2 and influenza virus infections with no evidence of vaccine interference in mice. We propose that concomitant vaccination with the two-in-one WPV can be useful for controlling both diseases.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Ratones , Humanos , Vacunas contra la COVID-19 , Anticuerpos Antivirales , COVID-19/prevención & control , SARS-CoV-2 , Vacunación/métodos , Virión , Inmunogenicidad Vacunal
6.
Open Forum Infect Dis ; 10(11): ofad550, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023562

RESUMEN

Background: In-depth immunogenicity studies of tixagevimab-cilgavimab (T-C) are lacking, including following breakthrough coronavirus disease 2019 (COVID-19) in vaccinated patients with hematologic malignancy (HM) receiving T-C as pre-exposure prophylaxis. Methods: We performed a prospective, observational cohort study and detailed immunological analyses of 93 patients with HM who received T-C from May 2022, with and without breakthrough infection, during a follow-up period of 6 months and dominant Omicron BA.5 variant. Results: In 93 patients who received T-C, there was an increase in Omicron BA.4/5 receptor-binding domain (RBD) immunoglobulin G (IgG) antibody titers that persisted for 6 months and was equivalent to 3-dose-vaccinated uninfected healthy controls at 1 month postinjection. Omicron BA.4/5 neutralizing antibody was lower in patients receiving B-cell-depleting therapy within 12 months despite receipt of T-C. COVID-19 vaccination during T-C treatment did not incrementally improve RBD or neutralizing antibody levels. In 16 patients with predominantly mild breakthrough infection, no change in serum neutralization of Omicron BA.4/5 postinfection was detected. Activation-induced marker assay revealed an increase in CD4+ (but not CD8+) T cells post infection, comparable to previously infected healthy controls. Conclusions: Our study provides proof-of-principle for a pre-exposure prophylaxis strategy and highlights the importance of humoral and cellular immunity post-breakthrough COVID-19 in vaccinated patients with HM.

7.
EBioMedicine ; 98: 104878, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38016322

RESUMEN

BACKGROUND: SARS-CoV-2 booster vaccination should ideally enhance protection against variants and minimise immune imprinting. This Phase I trial evaluated two vaccines targeting SARS-CoV-2 beta-variant receptor-binding domain (RBD): a recombinant dimeric RBD-human IgG1 Fc-fusion protein, and an mRNA encoding a membrane-anchored RBD. METHODS: 76 healthy adults aged 18-64 y, previously triple vaccinated with licensed SARS-CoV-2 vaccines, were randomised to receive a 4th dose of either an adjuvanted (MF59®, CSL Seqirus) protein vaccine (5, 15 or 45 µg, N = 32), mRNA vaccine (10, 20, or 50 µg, N = 32), or placebo (saline, N = 12) at least 90 days after a 3rd boost vaccination or SARS-CoV-2 infection. Bleeds occurred on days 1 (prior to vaccination), 8, and 29. CLINICALTRIALS: govNCT05272605. FINDINGS: No vaccine-related serious or medically-attended adverse events occurred. The protein vaccine reactogenicity was mild, whereas the mRNA vaccine was moderately reactogenic at higher dose levels. Best anti-RBD antibody responses resulted from the higher doses of each vaccine. A similar pattern was seen with live virus neutralisation and surrogate, and pseudovirus neutralisation assays. Breadth of immune response was demonstrated against BA.5 and more recent omicron subvariants (XBB, XBB.1.5 and BQ.1.1). Binding antibody titres for both vaccines were comparable to those of a licensed bivalent mRNA vaccine. Both vaccines enhanced CD4+ and CD8+ T cell activation. INTERPRETATION: There were no safety concerns and the reactogenicity profile was mild and similar to licensed SARS-CoV-2 vaccines. Both vaccines showed strong immune boosting against beta, ancestral and omicron strains. FUNDING: Australian Government Medical Research Future Fund, and philanthropies Jack Ma Foundation and IFM investors.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Australia , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Vacunas de ARNm , SARS-CoV-2 , Adolescente , Adulto Joven , Persona de Mediana Edad
8.
EBioMedicine ; 97: 104842, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865043

RESUMEN

BACKGROUND: We previously demonstrated the safety and immunogenicity of an MF59-adjuvanted COVID-19 vaccine based on the SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a molecular clamp using HIV-1 glycoprotein 41 sequences. Here, we describe 12-month results in adults aged 18-55 years and ≥56 years. METHODS: Phase 1, double-blind, placebo-controlled trial conducted in Australia (July 2020-December 2021; ClinicalTrials.govNCT04495933; active, not recruiting). Healthy adults (Part 1: 18-55 years; Part 2: ≥56 years) received two doses of placebo, 5 µg, 15 µg, or 45 µg vaccine, or one 45 µg dose of vaccine followed by placebo (Part 1 only), 28 days apart (n = 216; 24 per group). Safety, humoral immunogenicity (including against virus variants), and cellular immunogenicity were assessed to day 394 (12 months after second dose). Effects of subsequent COVID-19 vaccination on humoral responses were examined. FINDINGS: All two-dose vaccine regimens were well tolerated and elicited strong antigen-specific and neutralising humoral responses, and CD4+ T-cell responses, by day 43 in younger and older adults, although cellular responses were lower in older adults. Humoral responses waned by day 209 but were boosted in those receiving authorised vaccines. Neutralising activity against Delta and Omicron variants was present but lower than against the Wuhan strain. Cross-reactivity in HIV diagnostic tests declined over time but remained detectable in most participants. INTERPRETATION: The SARS-CoV-2 molecular clamp vaccine is well tolerated and evokes robust immune responses in adults of all ages. Although the HIV glycoprotein 41-based molecular clamp is not being progressed, the clamp concept represents a viable platform for vaccine development. FUNDING: This study was funded by the Coalition for Epidemic Preparedness Innovations, the National Health and Medical Research Council of Australia, and the Queensland Government.


Asunto(s)
COVID-19 , Infecciones por VIH , Vacunas , Humanos , Anciano , SARS-CoV-2 , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus , Adyuvantes Inmunológicos , Infecciones por VIH/prevención & control , Glicoproteínas , Método Doble Ciego , Anticuerpos Antivirales , Anticuerpos Neutralizantes
9.
Nat Immunol ; 24(11): 1890-1907, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749325

RESUMEN

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αß signatures. Suboptimal TCRαß signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.


Asunto(s)
Linfocitos T CD8-positivos , Longevidad , Recién Nacido , Humanos , Anciano , Epítopos de Linfocito T/genética , Linfocitos T Citotóxicos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T/genética
10.
Nat Immunol ; 24(6): 979-990, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37188942

RESUMEN

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Asunto(s)
Antivirales , COVID-19 , Humanos , Calibración , Células Presentadoras de Antígenos , Linfocitos T CD8-positivos , Antígenos CD40 , Interferón-alfa , Linfocitos T CD4-Positivos
11.
Nat Immunol ; 24(6): 966-978, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37248417

RESUMEN

High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Linfocitos T CD8-positivos , Australia/epidemiología , SARS-CoV-2 , Inmunoglobulina G , Anticuerpos Neutralizantes , Inmunidad , Anticuerpos Antivirales , Vacunación
12.
Cell Rep Med ; 4(4): 101017, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37030296

RESUMEN

Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta , Vacunas contra la COVID-19 , SARS-CoV-2 , Vacuna BNT162 , Linfocitos T CD8-positivos
13.
ERJ Open Res ; 9(2)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36891079

RESUMEN

Background: COPD patients are more susceptible to viral respiratory infections and their sequelae, and have intrinsically weaker immune responses to vaccinations against influenza and other pathogens. Prime-boost, double-dose immunisation has been suggested as a general strategy to overcome weak humoral response to vaccines, such as seasonal influenza vaccination, in susceptible populations with weak immunity. However, this strategy, which may also provide fundamental insights into the nature of weakened immunity, has not been formally studied in COPD. Methods: We conducted an open-label study of seasonal influenza vaccination in 33 vaccine-experienced COPD patients recruited from established cohorts (mean age 70 (95% CI 66.9-73.2) years; mean forced expiratory volume in 1 s/forced vital capacity ratio 53.4% (95% CI 48.0-58.8%)). Patients received two sequential standard doses of the 2018 quadrivalent influenza vaccine (15 µg haemagglutinin per strain) in a prime-boost schedule 28 days apart. We measured strain-specific antibody titres, an accepted surrogate of likely efficacy, and induction of strain-specific B-cell responses following the prime and boost immunisations. Results: Whereas priming immunisation induced the expected increase in strain-specific antibody titres, a second booster dose was strikingly ineffective at further increasing antibody titres. Similarly, priming immunisation induced strain-specific B-cells, but a second booster dose did not further enhance the B-cell response. Poor antibody responses were associated with male gender and cumulative cigarette exposure. Conclusions: Prime-boost, double-dose immunisation does not further improve influenza vaccine immunogenicity in previously vaccinated COPD patients. These findings underscore the need to design more effective vaccine strategies for COPD patients for influenza.

14.
Immunity ; 56(4): 879-892.e4, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36958334

RESUMEN

Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Infección Irruptiva , ARN Viral , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunación
15.
EJHaem ; 4(1): 216-220, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36819189

RESUMEN

Zanubrutinib-treated and treatment-naïve patients with chronic lymphocytic leukaemia (CLL) or Waldenstrom's macroglobulinaemia were recruited in this prospective study to comprehensively profile humoral and cellular immune responses to COVID-19 vaccination. Overall, 45 patients (median 72 years old) were recruited; the majority were male (71%), had CLL (76%) and were on zanubrutinib (78%). Seroconversion rates were 65% and 77% following two and three doses, respectively. CD4+ and CD8+ T-cell response rates increased with third dose. In zanubrutinib-treated patients, 86% developed either a humoral or cellular response. Patients on zanubrutinib developed substantial immune responses following two COVID-19 vaccine doses, which further improved following a third dose.

16.
Elife ; 122023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36655976

RESUMEN

A defining feature of successful vaccination is the ability to induce long-lived antigen-specific memory cells. T follicular helper (Tfh) cells specialize in providing help to B cells in mounting protective humoral immunity in infection and after vaccination. Memory Tfh cells that retain the CXCR5 expression can confer protection through enhancing humoral response upon antigen re-exposure but how they are maintained is poorly understood. CXCR5+ memory Tfh cells in human blood are divided into Tfh1, Tfh2, and Tfh17 cells by the expression of chemokine receptors CXCR3 and CCR6 associated with Th1 and Th17, respectively. Here, we developed a new method to induce Tfh1, Tfh2, and Tfh17-like (iTfh1, iTfh2, and iTfh17) mouse cells in vitro. Although all three iTfh subsets efficiently support antibody responses in recipient mice with immediate immunization, iTfh17 cells are superior to iTfh1 and iTfh2 cells in supporting antibody response to a later immunization after extended resting in vivo to mimic memory maintenance. Notably, the counterpart human Tfh17 cells are selectively enriched in CCR7+ central memory Tfh cells with survival and proliferative advantages. Furthermore, the analysis of multiple human cohorts that received different vaccines for HBV, influenza virus, tetanus toxin or measles revealed that vaccine-specific Tfh17 cells outcompete Tfh1 or Tfh2 cells for the persistence in memory phase. Therefore, the complementary mouse and human results showing the advantage of Tfh17 cells in maintenance and memory function supports the notion that Tfh17-induced immunization might be preferable in vaccine development to confer long-term protection.


Asunto(s)
Memoria Inmunológica , Células T Auxiliares Foliculares , Humanos , Animales , Ratones , Células Th17/metabolismo , Linfocitos B , Linfocitos T Colaboradores-Inductores
17.
Nat Commun ; 13(1): 7543, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477661

RESUMEN

T cell exhaustion is a hallmark of hepatitis C virus (HCV) infection and limits protective immunity in chronic viral infections and cancer. Limited knowledge exists of the initial viral and immune dynamics that characterise exhaustion in humans. We studied longitudinal blood samples from a unique cohort of individuals with primary infection using single-cell multi-omics to identify the functions and phenotypes of HCV-specific CD8+ T cells. Early elevated IFN-γ response against the transmitted virus is associated with the rate of immune escape, larger clonal expansion, and early onset of exhaustion. Irrespective of disease outcome, we find heterogeneous subsets of progenitors of exhaustion, based on the level of PD-1 expression and loss of AP-1 transcription factors. Intra-clonal analysis shows distinct trajectories with multiple fates and evolutionary plasticity of precursor cells. These findings challenge the current paradigm on the contribution of CD8+ T cells to HCV disease outcome and provide data for future studies on T cell differentiation in human infections.


Asunto(s)
Linfocitos T CD8-positivos , Virosis , Humanos
18.
PLoS Pathog ; 18(10): e1010891, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36206307

RESUMEN

Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Humanos , Hemaglutininas , Anticuerpos Antivirales , Vacunación , Pruebas de Inhibición de Hemaglutinación , Vacunas de Productos Inactivados , Macaca fascicularis , Virión , Inmunoglobulina A , Inmunoglobulina G , Nucleoproteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...